乳がんは依然として世界的な課題であり、2018年には世界で60万人以上が乳がんのために命を落としている(参照論文)。死亡率を低減させる有効な取り組みとしてマンモグラフィによるスクリーニングが推奨されているが、増加する撮影済み画像数に対して読影専門医の増加が十分でないこと、偽陽性率および偽陰性率が見逃せない程度に高いことが問題となってきた。
11日、Nature Medicineに発表された研究論文では、上記の課題に対応するため新しい深層学習モデルの構築方法を明らかにした。より有効性の高いモデルを得るために重要となる点として、ラベル付きトレーニングデータを大量に取得すること、および母集団・機器・モダリティの全体で一般化を確実にすること、にフォーカスしている。チームは人間の学習過程を模倣するアプローチを採用しており、AIモデルを段階的にトレーニングし、各フェーズで学習した事前情報を活用していくことで高度にラベリングされたデータへの依存を減らし、正確に乳がんを検出するモデルの導出に成功したとのこと。
研究チームが構築したマンモグラフィのスクリーニングAIを5人の読影専門医と比較したところ、ツールは5人全てのパフォーマンスを上回り、感度は平均14%向上したことが示された。また興味深いことに、欧米人のデータからトレーニングされたこの深層学習モデルが、中国人集団においてもAUC 0.971を示すなど、モデルの高い一般化可能性も併せて明らかにしている。チームの着想が乳がんスクリーニングのあり方を変革させるものとなるか、期待は大きい。