舌がんは口腔発生のがんで最も頻度が高く、治療の遅れが死亡者増へとつながり、治療に伴う言語障害や嚥下障害も問題となる。舌がんのリスクを適切に層別化し、再発や全生存期間など転帰を予測する機械学習ツールが、フィンランドのヴァーサ大学から発表予定である。
フィンランドのメディア Mediiuutiseteでは、同研究と著者のRasheed Alabi氏を紹介している。Alabi氏の博士論文「Machine learning for personalized prognostication of tongue cancer」は来る4月15日にヴァーサ大学で審査される予定であり、その予測モデルは治療後の舌がん再発率を88.2%の精度で予測している。舌がん患者の全生存期間の予測についても、従来の病期分類やノモグラムを上回る結果を示したという。
同研究はフィンランドの5つの教育病院、およびブラジルのA.C.Camargoがんセンター、米国立衛生研究所の患者データが用いられた。従来のTNM分類は、がん患者の予後を予測する客観的で普遍的なツールであるが、特に早期舌がんに対する予測力には限界があることが指摘されてきた。より予測精度の高いシステムによって、口腔機能に影響するような、効果の乏しい治療や過剰な治療を防ぐことが期待される。