産後うつ病は出産経験女性の10%が罹患し、時に患者自身または子に対して深刻な転帰をもたらす重要疾患とされている。うつ病の既往は主要なリスク因子として知られているが、明確な病因は未だ明らかにされていない。スウェーデン・インド・ドイツなどの国際共同研究チームは「産後うつ病の発症を予測する機械学習アルゴリズム」を構築した。
Scientific Reportsから12日公開されたチームの研究論文によると、スウェーデン・ウプサラにおいて2009年から2018年までの間に実施された前向きコホート研究から、ベースとなるデータが収集されたという。4,313名の臨床データ・属性データ・心理測定データなどから産後うつ病の発症を予測する機械学習アルゴリズムを導いたところ、精度73%・感度72%・特異度75%と臨床的に有用と言えるパフォーマンスを示していた。一方、出産以前にメンタルヘルスの問題が無かった女性については、予測精度が64%へと低下する事実も認めている。また、産後うつ病の発症予測に対して高い説明力を示した変数は、妊娠中のうつ病と不安、回復力、性格に関連する変数などであった。
産後うつ病は、その罹患リスクを見過ごすことができない程度に高い頻度でみられる一方、適切な診断と治療介入を受けているのは一部に過ぎない。研究チームは、予測モデルに基づく個別フォローアップと費用対効果の高い管理指針策定を目指し、アルゴリズム精度の向上と個別リスク因子の有効利用を検討している。
関連記事: