医療とAIのニュース医療におけるAI活用事例最新医療AI研究COVID-19の転機を予測するフェデレーテッドラーニング研究

COVID-19の転機を予測するフェデレーテッドラーニング研究

フェデレーテッド・ラーニング(FL: Federated Learning)は、複数機関からのデータを用い、匿名性を維持しながらAIモデルを学習する手法である。データ共有に関する多くの障壁を回避できるとして、NVIDIA社を中心に応用が進んできた(参照: NVIDIA社の紹介動画)。英ケンブリッジ大学では「FLによってCOVID-19患者の人工呼吸治療と死亡を予測するAI研究」が行われている。

ケンブリッジ大学のリリースでは、学術誌 Nature Medicineに発表された同研究「EXAM: EMR CXR AI Model」が紹介されている。EXAMはこれまでで最大級かつ最も多様な臨床データが用いられたFL関連研究として、北米・南米・欧州・アジアから約10,000名のCOVID-19患者データ(電子カルテおよび胸部X線画像)を解析した。その結果、COVID-19患者における外来到着24時間以内の「人工呼吸治療の導入または死亡」の予測について、AIモデルは感度95%と特異度88%を達成している。

2020年3月〜4月にかけて約2週間あまりの学習データで、五大陸にまたがる汎用的で高品質のAIモデルを構築できたことは、FLによる画期的な成果として新たな基準となり得る。ケンブリッジ大学のFiona Gilbert教授は「最高の放射線科医のパフォーマンスに匹敵するソフトウェアを開発することは容易でないが、これは真の変革をもたらす希望となる。フェデレーテッド・ラーニングによって多様なデータを安全に統合できれば、学術界はより早くに変革を実現できるだろう」と語っている。

関連記事:

  1. NVIDIA Clara Federated Learning – 分散協働学習が生む新たな可能性
  2. 脳腫瘍を識別するAIのプライバシー保護 – Intelとペンシルバニア大学のFederated learning
  3. COVID-19患者の重症化を予測するマルチモーダルアプローチ
  4. COVID-19患者のICUベッドと人工呼吸器の需要を予測するAI – NHSとケンブリッジ大学が開発
TOKYO analytica
TOKYO analyticahttps://tokyoanalytica.com/
TOKYO analyticaはデータサイエンスと臨床医学に強力なバックグラウンドを有し、健康増進の追求を目的とした技術開発と科学的エビデンス構築を主導するソーシャルベンチャーです。 The Medical AI Timesにおける記事執筆は、循環器内科・心臓血管外科・救命救急科・小児科・泌尿器科などの現役医師およびライフサイエンス研究者らが中心となって行い、下記2名の医師が監修しています。 1. 岡本 将輝 信州大学医学部卒(MD)、東京大学大学院専門職学位課程修了(MPH)、東京大学大学院医学系研究科博士課程修了(PhD)、英University College London(UCL)科学修士課程最優等修了(MSc with distinction)。UCL visiting researcher、日本学術振興会特別研究員、東京大学特任研究員を経て、現在は米ハーバード大学医学部講師、マサチューセッツ総合病院研究員、SBI大学院大学客員教授など。専門はメディカルデータサイエンス。 2. 杉野 智啓 防衛医科大学校卒(MD)。大学病院、米メリーランド州対テロ救助部隊を経て、現在は都内市中病院に勤務。専門は泌尿器科学、がん治療、バイオテロ傷病者の診断・治療、緩和ケアおよび訪問診療。泌尿器科専門医、日本体育協会認定スポーツドクター。
RELATED ARTICLES

最新記事

注目の記事